
Methods xxx (2017) xxx–xxx
Contents lists available at ScienceDirect

Methods

journal homepage: www.elsevier .com/locate /ymeth
Node-based learning of differential networks from multi-platform gene
expression data
http://dx.doi.org/10.1016/j.ymeth.2017.05.014
1046-2023/� 2017 Elsevier Inc. All rights reserved.

⇑ Corresponding author.
E-mail address: zhangxf@mail.ccnu.edu.cn (X.-F. Zhang).

Please cite this article in press as: L. Ou-Yang et al., Methods (2017), http://dx.doi.org/10.1016/j.ymeth.2017.05.014
Le Ou-Yang a, Xiao-Fei Zhang b,⇑, Min Wu c, Xiao-Li Li c

aCollege of Information Engineering & Shenzhen Key Laboratory of Media Security, Shenzhen University, Shenzhen, China
b School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, China
c Institute for Infocomm Research (I2R), A*STAR, 1 Fusionopolis Way, Singapore

a r t i c l e i n f o
Article history:
Received 15 January 2017
Received in revised form 11 April 2017
Accepted 18 May 2017
Available online xxxx

Keywords:
Gaussian graphical model
Differential network analysis
Multi-view learning
Group lasso
Gene expression
a b s t r a c t

Recovering gene regulatory networks and exploring the network rewiring between two different disease
states are important for revealing the mechanisms behind disease progression. The advent of high-
throughput experimental techniques has enabled the possibility of inferring gene regulatory networks
and differential networks using computational methods. However, most of existing differential network
analysis methods are designed for single-platform data analysis and assume that differences between
networks are driven by individual edges. Therefore, they cannot take into account the common informa-
tion shared across different data platforms and may fail in identifying driver genes that lead to the change
of network. In this study, we develop a node-based multi-view differential network analysis model to
simultaneously estimate multiple gene regulatory networks and their differences from multi-platform
gene expression data. Our model can leverage the strength across multiple data platforms to improve
the accuracy of network inference and differential network estimation. Simulation studies demonstrate
that our model can obtain more accurate estimations of gene regulatory networks and differential net-
works than other existing state-of-the-art models. We apply our model on TCGA ovarian cancer samples
to identify network rewiring associated with drug resistance. We observe from our experiments that the
hub nodes of our identified differential networks include known drug resistance-related genes and poten-
tial targets that are useful to improve the treatment of drug resistant tumors.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction observed gene expression data are generated from a multivariate
Biological processes often involve the interactions of genetic
components such as mRNAs and proteins. Characterizing the regu-
latory interactions between genes is critical for elucidating the
structural and functional architecture within cells [1–3]. Moreover,
there is strong evidence that gene regulatory networks (GRN)
undergo changes in response to different conditions such as cancer
progression and drug resistance [4–6]. Therefore, inferring gene
regulatory networks and exploring how theses networks change
across different conditions are fundamental for understanding
the biological mechanisms behind disease development [7].

With the accumulation of gene expression data, an increasing
number of computational methods have been proposed for gene
regulatory network estimation [8,9]. Gaussian graphical models
(GGMs), which can identify conditional dependence (or direct
dependence) relationships between genes, have been widely used
for network inference [10]. Based on the assumption that the
normal distribution, the gene regulatory network can be deter-
mined directly from the precision matrix (or inverse covariance
matrix) of GGMs [11]. That is, two genes interact with each other
if and only if the corresponding entry of the precision matrix is
nonzero. Therefore, based on GGMs, the problem of gene regula-
tory network estimation can be turned into a problem of precision
matrix estimation. However, traditional GGMs typically infer one
network for a specific condition, and do not consider the network
rewiring between different conditions.

In recent years, several differential network analysis methods
have been developed for identifying altered dependencies between
genes across different conditions [12–14]. Based on GGMs, the dif-
ference between two group-specific networks can be identified by
calculating the difference between the two corresponding preci-
sion matrices [13]. Thus, most existing differential network analy-
sis methods first estimate each group-specific network separately,
and then calculate their difference [15]. However, estimating the
group-specific networks separately may lose the global dependen-
cies that preserve across all conditions. To exploit the similarity
between the true group-specific networks, several methods have
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been proposed to jointly estimate multiple graphical models that
share certain characteristics [13,16]. Most of these methods
assume that the differences between networks are driven by indi-
vidual edges. This is unrealistic in many real-world applications
since the difference between gene regulatory networks might be
driven by certain genes whose patterns of connectivity to other
genes are disrupted across conditions. To provide a more intuitive
interpretation of the network differences, Mohan et al. introduced
a node-based learning approach to jointly estimate multiple
GGMs [14].

Rapidly evolving technologies make it possible to collect gene
expression data for same patients from different experimental
platforms [17]. As gene expression data collected from different
platforms (multi-platform gene expression data) describe the
expression levels of genes for same patients from different views,
they may share some consistent information. Therefore, integrat-
ing multi-platform gene expression data may improve the accu-
racy of gene regulatory network estimation and differential
network analysis [18,13]. However, previous differential network
analysis methods focus on analyzing the gene expression data col-
lected from a single platform, which could not effectively leverage
the common information provided by multi-platform gene expres-
sion data.

To address the above problems, we propose a novel node-based
multi-view learning algorithm called co-perturbed node joint
graphical lasso (CPJGL) model, to simultaneously infer multiple
gene regulatory networks corresponding to different patient
groups and the differential networks between these patient groups
based on gene expression data collected from multiple data plat-
forms (Fig. 1). Our model is an extension of the node-based learn-
ing approach proposed by Mohan et al. [14] to the case where gene
expression data are characterized in terms of two aspect: patient
groups and platform types. Instead of assuming that individual
edges are shared or differed across disease states, we assume that
the differences between networks are driven by certain perturbed
regulatory genes. Based on the row-column overlap norm regular-
izer [14] and the group lasso penalty [19], our model can exploit
the characteristics shared by gene expression data collected from
different types of platforms. We propose an alternating direction
method of multiplier (ADMM) algorithm to solve the optimization
Fig. 1. Motivation and overview of our model. The input data are gene expression da
estimates the corresponding 2K gene regulatory networks and the K differential network
CPJGL encourages the inferred networks and differential networks to share common netw
The red node denotes the driver gene that perturbs the network structure.
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problem. In simulation studies, our proposed CPJGL demonstrated
better performance than other competing methods in network
inference and differential network analysis. To illustrate the effec-
tiveness of CPJGL on real biological data, we apply CPJGL on TCGA
ovarian cancer samples to identify network rewiring associated
with platinum resistance. We identify three key regulator genes,
namely TSC1, IRS1 and PDPK1, from mTOR signaling pathway
and two perturbed genes (MYC and BMP7) from TGF-b signaling
pathway. By literature search, we find that these five genes play
important roles in drug resistance.
2. Methods

2.1. Gaussian graphical models

Gaussian graphical models can encode the conditional depen-
dencies among a set of p genes, where the expression levels
(denoted by a p-dimensional random vector X ¼ ðX1; . . . ;XpÞT) of
these p genes are assumed to follow a multivariate Gaussian distri-
bution Nðl;RÞ (here l 2 Rp and R is a positive definite p� p
matrix). Then two genes are conditionally independent if and only
if the corresponding entry of the inverse covariance matrix (preci-
sion matrix)H ¼ R�1 is zero [11], i.e., genes i and j are independent
of each other given all of the other genes if and only if Hij ¼ 0.
These conditional dependence relationships can be described by
a graph in which nodes denote genes and edges connect condition-
ally dependent pairs of genes. To estimate the conditional depen-
dencies among p genes, it suffices to estimate the sparsity
pattern of the corresponding precision matrix H. Suppose that
we have n observations that are independently drawn from a mul-
tivariate Gaussian distribution Nðl;RÞ. When n > p, we can esti-
mate the precision matrix H ¼ R�1 by maximum likelihood.
However, when p > n, this approach fails since the empirical
covariance matrix is singular and cannot be inverted to yield an
estimate of R�1. To deal with this problem, a number of studies
[20–22] have instead taken a penalized log-likelihood:

max
H

n
2

logdet Hð Þ � tr SHð Þð Þ � kkHk1; ð1Þ
ta for two different patient groups collected from K data platforms. CPJGL jointly
s between these two patient groups by drawing support from the K data platforms.
ork structures. It also imposes hub structures on the resulting differential networks.
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where S is the sample covariance matrix, det �ð Þ is the determinant
of a matrix, tr �ð Þ is the trace of a matrix, kHk1denotes the sum of the
absolute values of the elements of H and k is a nonnegative tuning
parameter. The solution to problem (1) provides a sparse estimate
for H.

2.2. Problem statement and notations

Suppose that we have independent observations of p genes
collected from K different data platforms for n ¼ n1 þ n2 subjects
that can be divided into two groups (nc denotes the number of

subjects in the c-th group), i.e., xkc
i ¼ ðxkci1 ; . . . ; xkcip Þ

T 2 Rp for
i ¼ 1; . . . ;nc; c ¼ 1;2; k ¼ 1; . . . ;K. Furthermore, we assume that

xkc
1 ; . . . ;x

kc
nc � Nðlc;R

kcÞ for c ¼ 1;2; k ¼ 1; . . . ;K , where Rkc denotes
the covariance matrices for c-th group, corresponding to the k-th
data platform. Without loss of generality, we assume that the vari-
ables within each group are centred such that lc ¼ 0. The goal of
this study is to construct group-specific gene regulatory networks
and explore the changes of gene regulatory networks between two
different patient groups, based on gene expression data collected
from K different platforms. That is, we seek to estimate the 2K pre-

cision matrices Hkc ¼ ðRkcÞ
�1

for c ¼ 1;2; k ¼ 1; . . . ;K , and identify

the differences between Hk1 and Hk2 for k ¼ 1; . . . ;K.

For the sake of convenience, we denote fRkcg
c¼1;2
k¼1;...;K and

fHkcg
c¼1;2
k¼1;...;K as fRkcg and fHkcg respectively. Suppose that

A 2 Rp�p is a p� p matrix with element Aij. Its Frobenius norm, L1

norm and L2;1 norm are defined as kAkF ¼ ð
P

i;jA
2
ijÞ

1=2
;

kAk1 ¼
P

i;jjAijj and kAk2;1 ¼
Pp

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1A

2
ij

q
¼
Pp

j¼1kAjk2 (where Aj

is the j-th column of the matrix A), respectively.

2.3. Co-perturbed node joint graphical lasso

In this section, we propose a co-perturbed node joint graphical
lasso (CPJGL) model to jointly estimate multiple gene regulatory
networks corresponding to distinct but related platform types
and patient groups.

Let Skc ¼ 1=ncð Þ
Pnc

i¼1x
kc
i ðxkc

i Þ
T
be the sample covariance matrix

for the k-th platform and the c-th patient group. The negative
log-likelihood for the data can be written as [13]

L fHkcg
� �

¼
XK
k¼1

X2
c¼1

nc

2
tr SkcHkc
� �

� log det Hkc
� �� �

: ð2Þ

In order to provide a more intuitive interpretation of the net-
work differences, we consider the following assumptions: (1) The
gene regulatory networks of different patient groups are quite sim-
ilar to each other and the network differences are arisen from cer-
tain genes (e.g., transcription factors or kinases) whose functional
dependencies with other genes are disrupted across conditions;
(2) The number of edges in a biological networkmay be far less than
the full connected network. Therefore, we can require the resulting
estimation of precision matrices to be sparse; (3) As gene expres-
sion data collected from different platforms share certain common

information, the precision matricesHk1 andHk2 as well as their dif-

ference (i.e., Hk1 �Hk2) estimated from each platform may be sim-
ilar with each other or share some common structures. Therefore,
jointly estimating the 2K precision matrices and their differences
from 2K data sets may result in more accurate estimations.

Unlike previously developed node-based joint graphical lasso
models that infer the precision matrices corresponding to each
data platform separately, in addition to the loss function (2), we
impose a group lasso penalty on the precision matrices and a
Please cite this article in press as: L. Ou-Yang et al., Methods (2017), http://dx
row-column overlap norm penalty on the network difference,
and develop a novel co-perturbed node joint graphical lasso
(CPJGL) model:

min
fHkcg2Spþþ ;fV

kg2Rp�p

XK
k¼1

X2
c¼1

nc tr SkcHkc
� �

� log det Hkc
� �� �

þ k0
XK
k¼1
kVkk1 þ k1

X2
c¼1

X
i–j

XK
k¼1
ðHkc

ij Þ
2

 !1=2

þ k2
Xp
j¼1

V1

..

.

Vk

2664
3775

j

��������
��������
2

:

s:t: Hk1 �Hk2 ¼ Vk þ ðVkÞ
T
; for k ¼ 1; . . . ;K ð3Þ

where Spþþ denotes the sets of positive definite matrices of size p,
and k0; k1 and k2 are non-negative tuning parameters. The

l2;1-norm regularization (group lasso penalty)
P

i–j

PK
k¼1ðH

kc
ij Þ

2� �1
2

defined on fHkcg plays an important role in our CPJGL method: it
is the minimization of this penalty function that enforces the

entries Hkc
ij ; k ¼ 1;2; . . . ;K , to have consistent magnitudes, all either

zeros or nonzeros. Following the idea of row-column overlap norm

penalty [14], we decompose the differential networks Hk1 �Hk2 as

Hk1 �Hk2 ¼ Vk þ ðVkÞ
T
for k ¼ 1; . . . ;K , where Vk need not be sym-

metric. By penalizing the columns of Vk, we could find hub nodes

that drive the difference between two precision matrices Hk1 and

Hk2. The sparsity of each hub node’s connections to other nodes is
controlled by k0. Furthermore, based on the group lasso penalty, a
shared structure is encouraged among the K differential networks.
The choices of k1 and k0 control the sparsity of resulting gene regu-
latory networks and differential networks respectively, while the
choice of k2 controls the selection of hub nodes. We present our
parameter selection strategy at the end of this section.

2.4. Algorithm for parameter estimation

In this section, we solve the optimization problem (3) by using
an alternating direction method of multipliers (ADMM) [23]. We
reformulate (3) by introducing new variables:

min
fHkcg2Spþþ ;fZ

kcg;fVkg;fWkg

XK
k¼1

X2
c¼1

nc tr SkcHkc
� �

� log det Hkc
� �� �

þ k0
XK
k¼1
kVkk1 þ k1

X2
c¼1

X
i–j

XK
k¼1
ðZkc

ij Þ
2

 !1=2

þ k2
Xp
j¼1

V1

..

.

Vk

2664
3775

j

��������
��������
2

:

s:t: Hk1 �Hk2 ¼ Vk þWk; Vk ¼ ðWkÞ
T
;

Hkc ¼ Zkc; for k ¼ 1; . . . ;K and c ¼ 1;2: ð4Þ

The augmented Lagrangian to (4) is given by

XK
k¼1

X2
c¼1

nc trðSkcHkcÞ� logdetðHkcÞ
� �

þk1
X2
c¼1

X
i–j

XK
k¼1
ðZkc

ij Þ
2

 !1=2

þk0
XK
k¼1
kVkk1þk2

Xp
j¼1

V1

..

.

VK

264
375

j

�������
�������
2

þ
XK
k¼1
hFk;Hk1�Hk2�ðVkþWkÞiþ

XK
k¼1
hGk;Vk�ðWkÞ

T
i

þ
X2
c¼1

XK
k¼1
hQkc;Hkc�Zkci

þq
2

XK
k¼1

kHk1�Hk2�ðVkþWkÞk2FþkV
k�ðWkÞ

T
k2Fþ

X2
c¼1
kHkc�Zkck2F

 !
:

ð5Þ
.doi.org/10.1016/j.ymeth.2017.05.014
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where fFkg ¼ F1; . . . ; FK ; fGkg ¼ G1; . . . ;GK and fQkcg ¼ Q11; . . . ;QK2

are dual variables and q serves as a penalty parameter. Based on
this augmented Lagrangian, the computational algorithm for solv-
ing (3) is given in Algorithm 1, in which the operator Expand is
given by

ExpandðA;q;ncÞ ¼ argminH2Spþþ
f�nc log detðHÞ þ qkH� Ak2Fg

¼ 1
2U Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 2nc

q I
q� �

UT ;

ð6Þ

where UDUT is the eigenvalue decomposition of a symmetric matrix
A and nc is the number of subjects in the c-th group. The operator
T 1;2 is given by the following sparse group lasso problem which
has closed solution [19,13]

T 1;2ðA; k;bÞ ¼ argminX
1
2
kX � Ak2F þ kkXk1 þ b

Xp
j¼1
kXjk2

( )
; ð7Þ

In our implementation of this algorithm, the stopping criterion
for the inner loop is

max
k2f1;2;...;Kg;c2f1;2g

kðHkcÞ
ðtþ1Þ
� ðHkcÞ

ðtÞ
kF

kðHkcÞ
ðtÞ
kF

8<:
9=; 6 �; ð8Þ
Algorithm 1 ADMM algorithm for solving the CPJGL optimization problem (3).

Input:

sample covariance matrices fSkcg
c¼1;2
k¼1;...;K , parameters k0; k1 and k2.

Initialize:

Hkc ¼ Zkc ¼ I;Vk ¼Wk ¼ 0; Fk ¼ 0;Gk ¼ 0;Qkc ¼ 0, for k ¼ 1; . . . ;K and c ¼ 1;2;q ¼ 0:5;l ¼ 5; � ¼ 10�4; tmax ¼ 1000.
for t ¼ 1 : tmax do
q  lq
while (not converged) do

1: Hk1  Expand 1
2 ðH

k2 þ Vk þWk þ Zk1Þ � 1
2q ðQ

k1 þ n1S
k1 þ FkÞ;q;n1

� �
, for k ¼ 1; . . . ;K;

2: Hk2  Expand 1
2 ðH

k1 � ðVk þWkÞ þ Zk2Þ � 1
2q ðQ

k2 þ n2S
k2 � FkÞ;q;n2

� �
, for k ¼ 1; . . . ;K;

3: Zkc
ij ¼max 1� k1

qf
PK

k¼1ðH
kcþQkc=qÞ

2
ijg

1
2
;0

8<:
9=;ðHkc þ Qkc=qÞij for i– j and Zkc

ii ¼ ðH
kc þ Qkc=qÞii; c ¼ 1;2 and k ¼ 1; . . . ;K;

4: Let Hk ¼ 1
2 Hk1 �Hk2 �Wk þ ðWkÞ

T� �
þ 1

2q ðF
k � GkÞ, for k ¼ 1; . . . ;K;

V1

..

.

VK

264
375  T 1;2

H1

..

.

HK

264
375; k02q ; k22q

0B@
1CA;

5: Wk  1
2 ðV

kÞ
T
� Vk þ ðHk1 �Hk2Þ

� �
þ 1

2q ðF
k þ ðGkÞ

T
Þ for k ¼ 1; . . . ;K;

6: Fk  Fk þ qðHk1 �Hk2 � ðVk þWkÞÞ for k ¼ 1; . . . ;K;

7: Gk  Gk þ qðVk � ðWkÞ
T
Þ for k ¼ 1; . . . ;K;

8: Qkc  Qkc þ qðHkc � ZkcÞ for c ¼ 1;2 and k ¼ 1; . . . ;K;
end while

end for
where ðHkcÞ
ðtÞ

denotes the estimate ofHkc in the t-th iteration of the
ADMM algorithm and � is a tolerance that is set to 10�4 in our
experiments.

2.5. Tuning parameter selection

In this section, we propose the following Akaike information
criterion (AIC)-type quantity for selecting the tuning parameters
k0; k1 and k2:
Please cite this article in press as: L. Ou-Yang et al., Methods (2017), http://dx
AIC k0; k1; k2ð Þ ¼
XK
k¼1

X2
c¼1

nctraceðSkcĤkcÞ � nclogðdetðĤkcÞÞ
� �

þ 2
XK
k¼1

X2
c¼1
jĤkcj þ 2

XK
k¼1

vk þ a � jbV kj � vk
� �� �

: ð9Þ

where vk is the number of estimated hub nodes

(vk ¼
Pp

j¼11fkbV k
j
k0>0g

), jĤkcj and jbVkj are the cardinalities of Ĥkc and

bVk for k ¼ 1; . . . ;K; c ¼ 1;2 and a is a constant between zero and
one. We select the tuning parameters ðk0; k1; k2Þ for which the quan-
tity AICðk0; k1; k2Þ is minimized. Following the choice of [24], we
take a ¼ 0:2 in this study.
3. Simulation studies

In this section, we assess the performance of our proposed co-
perturbed node joint graphical lasso (CPJGL) model by comparing
it with other Gaussian graphical model-based algorithms. The
competing algorithms are the perturbed-node joint graphical lasso
(PNJGL) as proposed in [14], the joint graphical lasso with group
lasso penalty (GGL) as proposed in [13] and the gene network
reconstruction (GNR) method proposed by Wang et al. [18]. We
use the MATLAB code provided by Mohan et al. [14] to implement
PNJGL. For GGL, we use the JGL function with ‘penalty = group’
from the R package JGL. We use the software provided by Wang
et al. [18] to implement GNR. As PNJGL is not designed for multi-
platform data, when applying PNJGL, we fit networks for each plat-
form separately. When applying GGL, precision matrices corre-
spond to multiple platforms are fitted for each group separately,
and then we estimate the differential network correspond to each
platform by calculating the difference between the inferred group-
specific precision matrices. Since GNR is designed to reconstruct a
gene network using multiple datasets, when applying GNR, we first
.doi.org/10.1016/j.ymeth.2017.05.014
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utilize multiple datasets to infer the gene network corresponding
to each group separately, and then estimate the differential net-
work by calculating the difference between the inferred group-
specific gene networks. PNJGL has two parameters k1 and k2 which
control the sparsity of the estimated networks and differential net-
works respectively. GGL has two parameters k1 and k2 which con-
trol the sparsity of the estimated networks and the consistency
across multiple precision matrices. To ease interpretation, similar
to [13], we reparameterize the tuning parameters for GGL, where
x1 ¼ k1 þ 1ffiffi

2
p k2 and x2 ¼ 1ffiffi

2
p k2=ðk1 þ 1ffiffi

2
p k2Þ. GNR has one parameter

k which controls the sparsity of the estimated network.
We use several metrics to evaluate the performance of various

algorithms. If Ĥkc
ij is the ði; jÞth entry of an estimator Ĥkc and Hkc

ij

is the ði; jÞth entry of the true Hkc , for k ¼ 1; . . . ;K and c ¼ 1;2,
the true positive (TP) edges, false positive (FP) edges, true positive
differential (TPD) edges, false positive differential (FPD) edges,
precision (Pre) and recall (Rec) are defined as

TP ¼
XK
k¼1

X2
c¼1

X
i<j

I Ĥkc
ij – 0 and Hkc

ij – 0
n o

;

FP ¼
XK
k¼1

X2
c¼1

X
i<j

I Ĥkc
ij – 0 and Hkc

ij ¼ 0
n o

;

TPD ¼
XK
k¼1

X
i<j

I Ĥk1
ij – Ĥk2

ij and Hk1
ij –Hk2

ij

n o
;

FPD ¼
XK
k¼1

X
i<j

I Ĥk1
ij – Ĥk2

ij and Hk1
ij ¼ Hk2

ij

n o
;

Pre ¼
PK

k¼1
P

i<jI Ĥk1
ij – Ĥk2

ij and Hk1
ij –Hk2

ij

� �
PK

k¼1
P

i<jI Ĥk1
ij – Ĥk2

ij

� � ;

Rec ¼
PK

k¼1
P

i<jIðĤk1
ij – Ĥk2

ij and Hk1
ij –Hk2

ij ÞPK
k¼1
P

i<jIðH
k1
ij –Hk2

ij Þ
:

3.1. Simulation set-up

We consider two groups of subjects and their observations of p
genes collected from K ¼ 3 data platforms. In particular, we gener-
ate 6 scale-free networks for the two groups of subjects and 3 data
platforms, and all of them include the same set of p genes. We con-
sider scale-free networks because many biological networks have
been reported to be scale-free and it is more difficult to estimate
power-law degree distributions [1]. Across all simulation setups,
we set p ¼ 100 and n1 ¼ n2 ¼ n 2 f100;200;400g. Four of the p
genes are modified to create the perturbed genes (hub nodes in
the differential network) [14]. The structure of networks and dif-
ferential networks are preserved across the 3 data platforms. In
particular, we generate the data as follows:

1. We use the SFNG functions in Matlab with parameters
mlinks ¼ 2 and seed ¼ 1 to generate a scale-free network with
p ¼ 100 nodes. We randomly select four nodes as perturbed
nodes that drive the differential network.

2. For k ¼ 1; . . . ;K , we repeat Steps 3–5 to generate data sets for
each data platform.

3. We create a p� p symmetric matrix A to denote the adjacency
matrix of the generated scale-free network. In particular, Aij ¼ 0
if there is no edge between nodes i and j, and a uniform
Please cite this article in press as: L. Ou-Yang et al., Methods (2017), http://dx
distribution with support ½�0:6;�0:3�
S
½0:3;0:6� is used to

generate the nonzero entry of A. Then we duplicated A into

two matrices Sk1 and Sk2. For each selected perturbed node, we
randomly selected 50 elements of corresponding row and col-

umn of either Sk1 or Sk2 and reset their values to be drawn from
a uniform distribution with support ½�0:6;�0:3�

S
½0:3;0:6�. This

results in four hub nodes with degree 50 in the differential
network.

4. We let d ¼ minðkminðSk1Þ; kminðSk2ÞÞ, where kminð�Þ denotes the
smallest eigenvalue of the matrix. To ensure positive

definiteness, we set ðRk1Þ
�1
¼ Sk1 þ ð0:1þ jdjÞI and ðRk2Þ

�1
¼

Sk2 þ ð0:1þ jdjÞI, where I is a p� p identity matrix.
5. We generate n1 ¼ n2 independent subjects for each group, i.e.,

xk1
1 ; . . . ;xk1

n1
� Nð0;Rk1Þ and xk2

1 ; . . . ;xk2
n2
� Nð0;Rk2Þ.

3.2. Simulation results

Fig. 2 displays the performance of the compared methods on
simulation data with p ¼ 100 and n ¼ 100;200;400. In each plot,
different colored lines correspond to the evaluation results of dif-
ferent methods with respect to different tuning parameter values.
For example, each colored line for CPJGL corresponds to the results
obtained with a fixed value of the tuning parameter k2, as the value
of k1 varied (here we set k0 ¼ k1). As shown in Fig. 2, CPJGL outper-
forms PNJGL for a suitable range of parameter k2. PNJGL exploits
the similarity between two group-specific networks, but this
method can only analyze each data platform separately. The com-
parison with PNJGL shows the gain of performance when CPJGL
utilizes group sparse penalty to borrow strength across multiple
data platforms. We can also observe from Fig. 2 that CPJGL
performs better than GGL and GNR in both network inference
and differential network analysis. GGL is designed to jointly esti-
mate multiple precision matrices that share certain characteristics,
but it can only infer each group-specific network separately and
does not consider the hub structure of the differential network.
GNR can borrows strength across multiple datasets to infer a
group-specific network, but like GGL, it can only infer each
group-specific network separately and does not consider the hub
structure of the differential network. The comparison with GGL
and GNR demonstrates the advantage of making use of the charac-
teristics shared by different patient groups and different data
platforms.

4. Identification of differential networks associated with
ovarian cancer

In this section, we present the experimental results of applying
CPJGL to real gene expression data sets.

4.1. Data sets

The development of drug resistance is the predominant cause of
treatment failure and death in ovarian cancer [25]. In this experi-
ment, we aim to reconstruct the gene regulatory networks of two
groups of ovarian tumors (i.e., drug sensitivity patient group and
drug resistance patient group), as well as to identify genes whose
interactions with other genes vary significantly between the two
patient groups. We download the gene expression profiles (level
3) for ovarian cancer patients from The Cancer Genome Atlas
(TCGA) website (on February 2016). In this study, we consider
three platforms, namely, Agilent 244 K Custom Gene Expression
G450, Affymetrix HT Human Genome U133 Array Plate Set, and
Affymetrix Human Exon 1.0 ST Array [26]. In particular, we have
collected gene expression levels of 11,750 genes for 514 patients
.doi.org/10.1016/j.ymeth.2017.05.014
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Fig. 2. Performance of different methods with p ¼ 100;K ¼ 3 and (a) n ¼ 100, (b) n ¼ 200, and (c) n ¼ 400. Each colored curve corresponds to a fixed value of k2 (x2 for GGL),
with k1 (x1 for GGL and k for GNR) varied. Red line: CPJGL; blue line: PNJGL; green line: grouped graphical lasso (GGL); dark blue line: GNR. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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across all these three platforms. To make the data more normally
distributed, we apply a logarithmic transformation on each data
set. In the following experiments, for the sake of convenience, we
refer to these three platforms as G450, U133 and HuEx,
respectively.

According to the criterion used in [27], we divided the patients
into two groups, namely platinum sensitivity patient group and
platinum resistance patient group. A patient is defined as platinum
sensitive if there is no evidence of disease progression within
6 months from the end of the last primary treatment, and the
follow-up interval is at least 6 months from the date of last pri-
mary treatment. Patients with evidence of disease progression
within 6 months from the end of primary treatment are defined
as platinum resistant. Among the 514 patients, 340 patients have
explicit platinum status, with 242 platinum sensitive and 98 plat-
inum resistant. For each platform, we normalize the gene expres-
sion data to have mean zero and standard deviation one within
each patient group.
Please cite this article in press as: L. Ou-Yang et al., Methods (2017), http://dx
The mTOR signaling pathway has been suggested to be fre-
quently mutated in ovarian cancer [26], and is frequently impli-
cated in resistance to anticancer therapies [28]. Besides mTOR
signaling pathway, TGF-b signaling pathway also plays an impor-
tant role in drug resistance [29]. Therefore, we take a pathway-
based analysis in this study. We download the mTOR signaling
pathway and TGF-b signaling pathway from the Kyoto Encyclope-
dia of Genes and Genomes database [30]. Out of the 60 genes in the
mTOR signaling pathway and the 84 genes in the TGF-b signaling
pathway, there are 51 and 75 genes included in our considered
gene expression data sets, respectively. The standardized gene
expression information for each sample can be downloaded from
https://github.com/Oyl-CityU/CPJGL.

4.2. Differential network analysis

We first use CPJGL to infer the network difference among genes
belonging to mTOR signaling pathway, based on gene expression
.doi.org/10.1016/j.ymeth.2017.05.014
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Fig. 4. The differential networks between drug sensitivity and drug resistance patient groups (TGF-b signaling pathway) estimated by CPJGL from three data platforms (a)
G450, (b) U133 and (c) HuEx, with k0 ¼ k1 ¼ 7:84 and k2 ¼ 196. Two genes, namely MYC and BMP7 are identified as hub nodes in the three differential networks.

Fig. 3. The differential networks between drug sensitivity and drug resistance patient groups (mTOR signaling pathway) estimated by CPJGL from three data platforms (a)
G450, (b) U133 and (c) HuEx, with k0 ¼ k1 ¼ 7:84 and k2 ¼ 171:5. Three genes, namely TSC1, IRS1 and PDPK1 are identified as hub nodes in the three differential networks.
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data collected from the above three platforms. The tuning param-
eters ðk0; k1; k2Þ of CPJGL are selected by AIC. According to the selec-
tion result, we set k0 ¼ k1 ¼ 7:84 and k2 ¼ 171:5. The estimated
differential networks for three platforms are shown in Fig. 3.

As shown in Fig. 3, owing to the group lasso penalty, the differ-
ential networks identified by CPJGL from K data platforms have
same structures. We can find from Fig. 3 that three hub nodes in
the differential network, namely TSC1, IRS1 and PDPK1, are identi-
fied. TSC1 interacts with TSC2 to form a multi-protein complex
(TSC complex) which acts as an important integrator of different
signaling pathways controlling mTOR signaling [31]. The TSC com-
plex has been implicated as a tumor suppressor [32]. IRS1 is an
important growth-regulatory protein. Researches have found that
the majority of malignant epithelial ovarian tumors show IRS1
overexpression when compared with normal ovarian tissue, which
means IRS1 may be a possible target in ovarian cancer. As a sig-
nalling adapter protein, IRS1 is an important mediator of ovarian
cancer cell growth suppression and can be a potential effective tar-
get for chemotherapeutic intervention [33]. Recently, Eckstein
have reported that IRS1 has a functional role in cancer progress
and platinum resistance [34]. PDPK1 is a master kinase, which
plays an important role in the signalling pathways activated by
several growth factors and hormones including insulin signaling.
Lohneis et al. have found a negative correlation between PDPK1
expression and ovarian tumor grade, which indicates that PDPK1
might be a prognostic marker and a possible therapeutic target
in ovarian serous carcinoma [35]. Moreover, Wu et al. have found
that PDPK1 is associated with chemoresistance in ovarian cancer
cells [36]. Therefore, our identified hubs TSC1, IRS1 and PDPK1,
Please cite this article in press as: L. Ou-Yang et al., Methods (2017), http://dx
which are likely to be associated with platinum resistance in ovar-
ian cancer, provide valuable insights for drug resistance analysis.

When applying CPJGL on the TGF-b signaling pathway, we set
k0 ¼ k1 ¼ 7:84 and k2 ¼ 196 according to AIC. The estimated differ-
ential networks for three platforms are shown in Fig. 4.

As can be seen from Fig. 4, there are two key hub nodes in the
estimated differential networks: MYC and BMP7. MYC is a regula-
tor gene that codes for a transcription factor. Amplification of the
MYC gene has been found in a significant number of epithelial
ovarian cancer cases [37]. Research has shown that MYC is associ-
ated with faster recurrence and poor overall survival of patients
with high-grade serous ovarian cancer, and with cisplatin resis-
tance in ovarian cancer cells [38]. In ovarian cancer, overexpression
of BMP7 has been reported as dysregulated by microarray analysis
[39]. Recently, BMP7 has been identified as a candidate gene that
might play a role in secondary drug resistance [40]. Therefore,
BMP7 might be potentially used as a molecular target to improve
the treatment of platinum-resistant tumors.
5. Conclusions

In this study, a novel node-based multi-view learning algorithm
called co-perturbed node joint graphical lasso (CPJGL) model is
developed to jointly estimate multiple gene regulatory networks
corresponding to different patient groups and the differential net-
works between these patient groups, based on gene expression
data collected frommultiple data platforms. Unlike previous differ-
ential network analysis methods that assume the differences
.doi.org/10.1016/j.ymeth.2017.05.014
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between networks are driven by individual edges, our model made
more reasonable assumption that the differences between net-
works are driven by certain regulator genes that are perturbed.
Moreover, instead of inferring the differential network from each
data platform separately, we jointly estimate multiple differential
networks frommulti-view gene expression data, which can exploit
the common information provided by different views of data.
Based on the idea of row-column overlap norm and group lasso
penalty, our penalty function encourages the appearance of hub
nodes in the estimated differential networks and encourages a
similar pattern of sparsity across all precision matrices and
precision matrix difference. Simulation studies demonstrate that
our method consistently outperforms existing state-of-the-art net-
work inference and differential network analysis algorithms. We
apply our method to TCGA ovarian gene expression data collected
from three platforms to study network rewiring associated with
drug resistance. Once again, the experiment results demonstrate
the potential of our method in detecting edges and genes that
could provide insights into the molecular mechanisms of drug
resistance.

When analyzing real data, due to the lack of gold standard, we
are unable to evaluate the performance of network inference and
differential network analysis methods. Therefore, it is difficult to
compare different methods in terms of the accuracy of the esti-
mated networks and differential networks. As a result, we only
compare our method with state-of-the-art methods using
simulated data and apply our method on real data to explore the
network rewiring associated with drug resistance.

Besides graphical models, partial correlation and part mutual
information have also been used to infer the direct interactions
among genes [9,41,42]. However, when inferring differential net-
works, these correlation-based methods need to estimate each
group-specific gene regulatory network separately, which totally
ignore the similarity between the two group-specific gene regula-
tory networks. Based on graphical models, any structures of inter-
est (such as the consistency across multiple data platforms) can be
easily imposed on the resulting differential networks by utilizing
suitable penalty functions. Thus, in this study, we use a graphical
model to formulate the differential network estimation problem
as a statistical learning problem.

Recently, a novel statistical method has been developed to infer
individual-specific networks based on statistical perturbation anal-
ysis of a single sample against a group of given control samples
[43]. Elucidating molecular mechanisms of individual-specific
diseases may be beneficial to personalized diagnosis and individu-
alized treatment. However, as a graphical model, our model can
only infer an aggregated network for a group of samples. In the
future, we will investigate how to utilize data collected from mul-
tiple platforms to identify sample-specific differential networks.
Another limitation of our method is the assumption of the
Gaussian distribution, since this assumption only holds for
microarray-based gene expression data. In the future, we will con-
sider how to extend our model to handle non-Gaussian data.
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